The case for EJB3.0 as a distributed SOA

Posted: May 15, 2011 in architecture
Tags: , , ,

Two years back, I was tasked with redesigning the member portal for my company. We had a great set of tools we could crank smaller applications out, and a brilliant team of people who understood them. This team frequently debated best practices in Maven, Spring, Hibernate, etc and the design patterns that surrounded them. Bean naming conventions were tossed about, file naming conventions were invented, and over all, it was pretty good life. However, due to the economy and slow business, development teams were cut back. As the lead engineer on the member portal redesign, the team was cut to two engineers… myself being one of them.

At the time, we built our applications surrounding Spring’s best practices. You could say our applications completely revolved around Spring. We had interfaces for everything: We had domain jars, DAO jars, service jars, facade jars, war poms and ear poms. The jars were built into every application; we had a service jar that knew how to get member objects from our database; we had another just to lookup pharmacies… Each one of these got baked into the applications…. Since each application went to production separately, our platform fragmented into a pile of baby powder. When SHTF (Support Hit The Fan), I think the most common question I was asked was, “Hey Jon, what version of member services is X application on?”

With every app on an ever-so-slightly-different version of a particular service, the memory usage for an individual application was outrageous. Startup times for individual apps was measured in minutes for some. With every application owning its own services, we had to provision multiple datasources for each app. Caching was unheard of… Things really started getting out of hand when our customers wouldn’t migrate between versions of our applications or SOAP services (who can blame them?). Quite slowly, we had a sprawling portfolio of slightly similar production applications that we had to keep running. Budgets and teams were shrinking, and this massive project had to take flight; deadlines were just over the horizon, but disaster was brewing in the skies and the sound of delays thundered in the distance.

Philosophically, we claimed we didn’t build monolithic applications. After all, our applications had a “separation of concerns,” only in the sense that each concern was a separate jar file. We had “services”, but these services were not distributed nor redundant. We knew we had to go the distributed route… so we started to “fix” our problems by making internal SOAP services available (After all, in Spring, everything is a bean, so why can a proxy be a bean?) Our latency skyrocketed. Function calls that took 1ms now took 40+ms. We had to limit these to very coarse-grained calls, but that just caused our SOAP payload size to swell. We brought in individual caches for SOAP calls, but now we faced memory and coherency issues.

Back to the project, realizing that we had in fact been building “monolithic” applications, we had to go distributed. But how? My coworker said, lets just replace our SOAP calls with REST calls and we’ll be in great shape. So we set off, having my teammate write  the frontend in JSP/YUI, while I concentrated on developing the backend services and our usual massively complex Spring assembly. Benchmarking my calls, I saw we had gone from 40ms SOAP calls to 30ms of REST calls! What??? REST was the answer to all that was life! Panicking, I profiled the CXF/Spring code and realized I’m spending all day parsing strings! The only real benefit rest bought me was there was just less strings to parse!

I stopped. I know I’m supposed to “optimize last”, but clearly, our design or technology choices were flawed. The services had complex bindings and a million strange annotations littered about them. And oh man, did we have a ton of Spring XML files. Something had to change…

About that time, I stumbled on post by Adam Bien … Take a look at some EJB3.0 code he published:

public interface BookService {
Book createOrUpdate(Book book);
void remove(Book book);
Book find(Object id);

To use invoke that service remotely (to ‘inject’ or ‘lookup’ that service) you do this:

private BookService  service;

Wait, isn’t EJB code supposed to be complex? Isn’t it full of XML, vendor specific deployment descriptors, RemoteExceptions, Portable Objects, Narrowing, IIOP, CORBA, RMI, Lookups, LocalHomes, RemoteHomes, Object pools, RMIC compilers, IDLs and IntitialContexts? Doesn’t every method have to throw annoying checked exceptions? And most of all, when the hell did EJBs get Java annotations???

Here’s the crux of this post: The above code is expressive and clear in its intent. Even a Ruby programmer (joke) could see that we’re defining a service contract here that will be offered remotely. This style of definition delivers a certain elegance in its simplicity.

…and I realized that I had a possible solution to my problems. I quickly ripped out my Spring/CXF/REST job  and reduce the clutter to a few lines of code. I deleted my Spring files and flung XML into the recycle bin. The moment of truth came with the benchmarks… So EJB under the scenes uses Java serialization… and it’s fast… a lot faster than SOAP and still faster than REST. My response times  dropped below 10ms. Payloads that were single lines of text dropped to 3ms or less… wow!  Better yet, getting rid of the Spring Jars, the CXF jars and their laundry list of transient dependencies took our deployment artifacts from 20 megabytes to 700 kilobytes. Now that is lightweight! I got approval to move forward with the technology and I surged forward, ripping to shreds my previous XML excursion in a wake of JEE.

Now EJB3.0 isn’t without its own set of problems, which I will cover in later posts, but overall, it offers several key advantages:

  1. It’s lightweight: You can write full services using 4 annotations and deploy under a megabyte. I haven’t seen applications that small since Windows 3.1.
  2. It’s fast: Well faster than REST/SOAP… I’m sure there are probably faster binary protocols, but hey, Java Serialization is built into the JVM and it spanks any text protocol.
  3. It’s familiar: You still have to be conscious that you’re in a distributed system, but most developers have used Java Serialization. For most POJOs, you don’t have to do anything except implement Serializable.
  4. It’s transparent: It’s amazing. The EJB3.0 annotations are minimal and powerful at the same time. Developer productivity is high, and there is no generated boilerplate code. It’s easy to teach these concept to people who didn’t bear the tragedy of EJB2.1.
  5. It’s reliable: EJB has always been a cluster-able technology if you application container supports it.
The story doesn’t end, as this was just the first iteration of the application. The new member portal application is happily humming along in production. We’ve had a few hiccups with WebSphere 7, but for the most part, it’s been relatively problem free. We’re also finally starting to reap the benefits of a distributed SOA architecture. Our applications share connection pools, we’re cutting down to a few core services, deployment artifact size is 20x smaller, and memory usage is dropping.
In future posts, I’ll write examples of just how easy it is to get these services running, and why Java is a great distributed language when coupled with JEE6. You can have developer productivity (and fun) without sacrificing reliability on bleeding edge dynamic languages.


A great resource for EJB3.0 is the free book Master EJB 4th Edition. I read the entire thing in a weekend on an Evo4g. It’s brief, but it will give you a working knowledge to get off and running.
Also, Adam Bien‘s weblog is a great resource for everything EJB3+ and JEE6.
  1. Martin Vanek says:

    May 2011?!?
    I though this was written in 2006 when Spring 2.0 and EJB 3 implementations were released. Both with annotation configuration. You’ve just had huge technical debt.

    • Jonathan says:

      Yes, that is undoubtedly true! However, the use of annotations (which we started using) instead of xml did not solve the fragmentation problem, nor does it solve the distribution problem. We still would have massive monolithic applicaions that were tired directly to their environmental resources.

  2. Ivan says:

    loose coupling leading to fragmentation is a problem only if you let it become one. thats kind of like saying the problem with caching is memory.

    sounds like you bought adams eternal jee pitch. if he had his way, you’d replace your washer and dryer with ee6. he mysteriously never finds anything wrong with it!

    • Jonathan says:

      Absolutely agree with your first point. As an example, I caught a developer at my shop creating a separate EJB for for ‘DAO’ and one for ‘Service’. The service contained nothing but a passthrough to the DAO… When I asked why he did this, he said it was ‘best practice’ in which I informed him those were ‘wasted hours.’ I think the point here is that any technology can be implemented poorly, but SOA-like patterns can be used to help you govern your fragmentation.

      To your second statement, I absolutely agree with Adam on the ‘newer’ apis like EJB3, JPA, JAX-WS, CDI etc (and JMS, although that’s not new and Adam doesn’t write much about it). But have you ever had to interact with an EIS system and written a JCA adapter? How about attempting perform a login to JAAS programmatically? JEE has so many holes, I can only recommend parts. I’ll be writing some things about my favorite parts about Spring, as it is completely necessary to implement some things in a sane manner.

      Thanks for commenting!

  3. I actually wanted to present this unique blog post, “The case for EJB3.
    0 as a distributed SOA The Code Mechanic” along with my best good friends on facebook itself.

    Ijust simply planned to disperse ur superb posting!
    With thanks, Valentina

  4. Hämoriden says:

    I am actually thankful to the owner of this site who has shared
    this great post at here.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s